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1 Preliminaries

Let f0 : Rn → R be a differentiable convex function, fi : Rn → R for i = 1, 2, ..., p be
differentiable convex functions and hi : Rn → R be affine functions for i = 1, ..., q. We
consider the following constrained minimization problem or the primal problem

inf
x∈Ω

f0(x), (1)

where
Ω := {x ∈ Rn | fi(x) ≤ 0 for i = 1, ..., p and hi(x) = 0 for i = 1, ..., q}. (2)

The Lagrangian corresponding to the minimization problem (1) is defined as

L(x, y, z) = f0(x) +

p∑
i=1

yifi(x) +

q∑
i=1

zihi(x), (3)

where y ∈ Rp
+ and z ∈ Rq are called Lagrange multipliers. We define the dual of the

Lagrangian L to be
g(y, z) = inf

x∈Ω
L(x, y, z). (4)

Thus, the dual problem of (1) is given by

sup
(y,z)∈K

g(y, z), (5)

where K := Rp
+ × Rq. A point (x, y, z) ∈ Rn ×K is said to be a saddle point for L if it

satisfies
L(x, y, z) ≤ L(x, y, z) ≤ L(x, y, z) (6)

where (x, y, z) ∈ Rn ×K.

Definition 1.1 (Slater Constraint Qualification). We say that Ω defined in (2) satisfies the
slater constraint qualification if there exists x̃ ∈ Ω such that fi(x̃) < 0 for i = 1, ..., p.
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We know that the Slater’s condition implies the strong duality, i.e. there exist x ∈ Ω and
(y, z) ∈ K such that f0(x) = g(y, z).

Definition 1.2 (Feasibility and Optimality). We say that the solution x is a feasible so-
lution of a primal problem if x ∈ Ω. We say that the solution x of a primal problem (1) is
an optimal solution if it is feasible and satisfies f0(x) ≤ f0(x) for all x ∈ Ω.

Next, we state without proof an important theorem for the optimality condition of a
solution to the optimization problem. This is called Karush-Kuhn-Tucker theorem or
KKT condition.

Theorem 1.3. A triplet (x, y, z) ∈ Rn ×K is said to be a KKT triplet if it satisfies the
following KKT conditions

1. (Primal feasibility) fi(x) = 0 for i = 1, ..., p and hi(x) = 0 for i = 1, ..., q.

2. (Dual feasibility) yi ≥ 0 for i = 1, ..., p.

3. (Complementary slackness) yifi(x) = 0 for i = 1, ..., p.

4. ∇xL(x, y, z) = 0

If (x, y, z) ∈ Ω×K is KKT triplet then x is an primal optimal and (y, z) is a dual optimal
with zero duality gap.

If the minimization problem (1) has a differentiable and convex cost function f0 and also
fi are differentiable and convex, for i = 1, ..., p satisfying the Slater’s condition, then the KKT
theorem gives the necessary and sufficient condition for optimality, i.e. (x, y, z) ∈ Ω×K is
a KKT triplet if and only if x is an primal optimal and (y, z) is a dual optimal.

2 Saddle Point Theorem

Theorem 2.1 (Saddle Point Theorem). Let x ∈ Rn, if there exists (y, z) ∈ K such that
(x, y, z) is a saddle point for the Lagrangian L, then x solve (1). Conversely, if x is the
optimal solution to (1) at which the Slater’s condition holds, then there is (y, z) such that
(x, y, z) is a saddle point for L.

Proof. To start with, we want to show that if there exists (x, y, z) ∈ Rn × K such that
(x, y, z) satitisfies the saddle point condition (6) then x is the optimal solution to (1).

First we show that x is a feasible solution. Consider

L(x, y, z) = f0(x) +

p∑
i=1

yifi(x) +

q∑
i=1

zihi(x),

where yi ≥ 0. Using the definition of a saddle point (6), we have that

sup
(y,z)∈K

L(x, y, z) ≤ L(x, y, z)
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It is clear that hi(x) must be 0; otherwise, we choose z to be sgn(hi(x))∞ and thus
sup(y,z)∈K L(x, y, z) = +∞, which is absurd. Also, fi(x) must be less than or equal to 0;
otherwise, we can let yi → +∞, which gives sup(y,z)∈K L(x, y, z) = +∞. Hence, x is a feasible
solution to (1). Now we want to show that x is the optimal solution to (1) i.e. we need to
show f0(x) ≤ f0(x) for all x ∈ Ω. Using the saddle point condition (6), L(x, y, z) ≤ L(x, y, z),

f0(x) +

p∑
i=1

yifi(x) +

q∑
i=1

zihi(x) ≤ f0(x) +

p∑
i=1

yifi(x) +

q∑
i=1

zihi(x)

Since x is the feasible solution, hi(x) = 0 for i = 1, ..., q. Then we have,

p∑
i=1

(yi − yi)fi(x) ≤ 0 for all yi ∈ Rp
+.

Thus, we let y = 0 and using the fact that yi ≥ 0 and fi(x) ≤ 0 for i = 1, ..., p to conclude
that

p∑
i=1

yfi(x) = 0

Now consider f0(x) = L(x, y, z) ≤ L(x, y, z), we have f0(x) ≤ infx∈Ω L(x, y, z). Thus,

f0(x) ≤ inf
x∈Ω

f0(x) + inf
x∈Ω

p∑
i=1

yifi(x)

With fi(x) ≤ 0 and yi ≥ 0 i = 1, ..., p, we have f0(x) ≤ f0(x) for all x ∈ Ω. Thus, x is the
optimal solution to the primal problem (1)

Conversely, suppose that x is the optimal solution to primal problem (1) and the Slater’s
condition holds. Since x is the solution to the primal problem (1), by Slater’s condition,
there exists the dual optimal (y, z) ∈ K such that (x, y, z) is the KKT triplet.

First, we show that L(x, y, z) ≥ L(x, y, z). Using that L(x, y, z) = f0(x) +
∑p

i=1 yifi(x) +∑q
i=1 zihi(x) and x is a feasible solution, we then obtain

L(x, y, z) ≤ f(x) = L(x, y, z)

The right-hand side follows from the complimentary slackness in Theorem (1.3), i.e. yifi(x) =
0 for i = 1, ..., p. Next, we show that L(x, y, z) ≥ L(x, y, z). Consider

L(x, y, z) = f0(x) +

p∑
i=1

yifi(x) +

q∑
i=1

zihi(x)

Since fi(x) for i = 1, .., p is a convex function and hi(x) for i = 1, ..q is an affine function,
using the first order characterization of a convex function, we have

fi(x) ≥ fi(x) +∇fi(x) · (x− x) for i = 1, ..., p

hi(x) = hi(x) +∇hi(x) · (x− x) for i = 1, ..., q
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This implies

L(x, y, z) ≥ f0(x)+

p∑
i=1

yifi(x)+

q∑
i=1

zihi(x)+

∇f0(x) +

p∑
i=1

yi∇(fi(x)

q∑
i=1

zi∇hi(x)

·(x−x)

Using the last KKT condition in Theorem (1.3), i.e. ∇xL(x, y, z) = 0, we obtain

L(x, y, z) ≥ f0(x) +

p∑
i=1

yifi(x) +

q∑
i=1

zihi(x)

= L(x, y, z),

which completes the proof.
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