Directed Reading Program Fall 2020 Saddle Point Theorem

Tharit Tangkijwanichakul

Mentor: Tharathep Sangsawang

December 6, 2020

1 Preliminaries

Let $f_0: \mathbb{R}^n \to \mathbb{R}$ be a differentiable convex function, $f_i: \mathbb{R}^n \to \mathbb{R}$ for i = 1, 2, ..., p be differentiable convex functions and $h_i: \mathbb{R}^n \to \mathbb{R}$ be affine functions for i = 1, ..., q. We consider the following **constrained minimization problem** or the **primal problem**

$$\inf_{x \in \Omega} f_0(x),\tag{1}$$

where

$$\Omega := \{ x \in \mathbb{R}^n \mid f_i(x) \le 0 \text{ for } i = 1, ..., p \text{ and } h_i(x) = 0 \text{ for } i = 1, ..., q \}.$$
 (2)

The Lagrangian corresponding to the minimization problem (1) is defined as

$$L(x, y, z) = f_0(x) + \sum_{i=1}^{p} y_i f_i(x) + \sum_{i=1}^{q} z_i h_i(x),$$
(3)

where $y \in \mathbb{R}^p_+$ and $z \in \mathbb{R}^q$ are called **Lagrange multipliers**. We define the dual of the Lagrangian L to be

$$g(y,z) = \inf_{x \in \Omega} L(x,y,z). \tag{4}$$

Thus, the **dual problem** of (1) is given by

$$\sup_{(y,z)\in K} g(y,z),\tag{5}$$

where $K := \mathbb{R}^p_+ \times \mathbb{R}^q$. A point $(\overline{x}, \overline{y}, \overline{z}) \in \mathbb{R}^n \times K$ is said to be a **saddle point** for L if it satisfies

$$L(\overline{x}, y, z) \le L(\overline{x}, \overline{y}, \overline{z}) \le L(x, \overline{y}, \overline{z}) \tag{6}$$

where $(x, y, z) \in \mathbb{R}^n \times K$.

Definition 1.1 (Slater Constraint Qualification). We say that Ω defined in (2) satisfies the slater constraint qualification if there exists $\tilde{x} \in \Omega$ such that $f_i(\tilde{x}) < 0$ for i = 1, ..., p.

We know that the Slater's condition implies the strong duality, i.e. there exist $\overline{x} \in \Omega$ and $(\overline{y}, \overline{z}) \in K$ such that $f_0(\overline{x}) = g(\overline{y}, \overline{z})$.

Definition 1.2 (Feasibility and Optimality). We say that the solution x is a **feasible solution** of a primal problem if $x \in \Omega$. We say that the solution \overline{x} of a primal problem (1) is an **optimal solution** if it is feasible and satisfies $f_0(\overline{x}) \leq f_0(x)$ for all $x \in \Omega$.

Next, we state without proof an important theorem for the optimality condition of a solution to the optimization problem. This is called **Karush-Kuhn-Tucker theorem** or **KKT condition**.

Theorem 1.3. A triplet $(\overline{x}, \overline{y}, \overline{z}) \in \mathbb{R}^n \times K$ is said to be a **KKT triplet** if it satisfies the following **KKT conditions**

- 1. (Primal feasibility) $f_i(x) = 0$ for i = 1, ..., p and $h_i(x) = 0$ for i = 1, ..., q.
- 2. (Dual feasibility) $y_i \ge 0$ for i = 1, ..., p.
- 3. (Complementary slackness) $y_i f_i(x) = 0$ for i = 1, ..., p.
- 4. $\nabla_x L(x,y,z) = 0$

If $(\overline{x}, \overline{y}, \overline{z}) \in \Omega \times K$ is KKT triplet then \overline{x} is an primal optimal and $(\overline{y}, \overline{z})$ is a dual optimal with zero duality gap.

If the minimization problem (1) has a differentiable and convex cost function f_0 and also f_i are differentiable and convex, for i=1,...,p satisfying the Slater's condition, then the KKT theorem gives the necessary and sufficient condition for optimality, i.e. $(\overline{x}, \overline{y}, \overline{z}) \in \Omega \times K$ is a KKT triplet if and only if \overline{x} is an primal optimal and $(\overline{y}, \overline{z})$ is a dual optimal.

2 Saddle Point Theorem

Theorem 2.1 (Saddle Point Theorem). Let $\overline{x} \in \mathbb{R}^n$, if there exists $(\overline{y}, \overline{z}) \in K$ such that $(\overline{x}, \overline{y}, \overline{z})$ is a saddle point for the Lagrangian L, then \overline{x} solve (1). Conversely, if \overline{x} is the optimal solution to (1) at which the Slater's condition holds, then there is $(\overline{y}, \overline{z})$ such that $(\overline{x}, \overline{y}, \overline{z})$ is a saddle point for L.

Proof. To start with, we want to show that if there exists $(\overline{x}, \overline{y}, \overline{z}) \in \mathbb{R}^n \times K$ such that $(\overline{x}, \overline{y}, \overline{z})$ satisfies the saddle point condition (6) then \overline{x} is the optimal solution to (1).

First we show that \overline{x} is a feasible solution. Consider

$$L(\overline{x}, y, z) = f_0(\overline{x}) + \sum_{i=1}^p y_i f_i(\overline{x}) + \sum_{i=1}^q z_i h_i(\overline{x}),$$

where $y_i \geq 0$. Using the definition of a saddle point (6), we have that

$$\sup_{(y,z)\in K}L(\overline{x},y,z)\leq L(\overline{x},\overline{y},\overline{z})$$

It is clear that $h_i(\overline{x})$ must be 0; otherwise, we choose z to be $\operatorname{sgn}(h_i(\overline{x})) \infty$ and thus $\sup_{(y,z)\in K} L(\overline{x},y,z) = +\infty$, which is absurd. Also, $f_i(\overline{x})$ must be less than or equal to 0; otherwise, we can let $y_i \to +\infty$, which gives $\sup_{(y,z)\in K} L(\overline{x},y,z) = +\infty$. Hence, \overline{x} is a feasible solution to (1). Now we want to show that \overline{x} is the optimal solution to (1) i.e. we need to show $f_0(\overline{x}) \leq f_0(x)$ for all $x \in \Omega$. Using the saddle point condition (6), $L(\overline{x},y,z) \leq L(\overline{x},\overline{y},\overline{z})$,

$$f_0(\overline{x}) + \sum_{i=1}^p y_i f_i(\overline{x}) + \sum_{i=1}^q z_i h_i(\overline{x}) \le f_0(\overline{x}) + \sum_{i=1}^p \overline{y}_i f_i(\overline{x}) + \sum_{i=1}^q \overline{z}_i h_i(\overline{x})$$

Since \overline{x} is the feasible solution, $h_i(\overline{x}) = 0$ for i = 1, ..., q. Then we have,

$$\sum_{i=1}^{p} (y_i - \overline{y}_i) f_i(\overline{x}) \le 0 \text{ for all } y_i \in \mathbb{R}_+^p.$$

Thus, we let y = 0 and using the fact that $y_i \ge 0$ and $f_i(\overline{x}) \le 0$ for i = 1, ..., p to conclude that

$$\sum_{i=1}^{p} \overline{y} f_i(\overline{x}) = 0$$

Now consider $f_0(\overline{x}) = L(\overline{x}, \overline{y}, \overline{z}) \leq L(x, \overline{y}, \overline{z})$, we have $f_0(\overline{x}) \leq \inf_{x \in \Omega} L(x, \overline{y}, \overline{z})$. Thus,

$$f_0(\overline{x}) \le \inf_{x \in \Omega} f_0(x) + \inf_{x \in \Omega} \sum_{i=1}^p \overline{y}_i f_i(x)$$

With $f_i(x) \leq 0$ and $\overline{y}_i \geq 0$ i = 1, ..., p, we have $f_0(\overline{x}) \leq f_0(x)$ for all $x \in \Omega$. Thus, \overline{x} is the optimal solution to the primal problem (1)

Conversely, suppose that \overline{x} is the optimal solution to primal problem (1) and the Slater's condition holds. Since \overline{x} is the solution to the primal problem (1), by Slater's condition, there exists the dual optimal $(\overline{y}, \overline{z}) \in K$ such that $(\overline{x}, \overline{y}, \overline{z})$ is the KKT triplet.

First, we show that $L(\overline{x}, y, z) \geq L(\overline{x}, \overline{y}, \overline{z})$. Using that $L(\overline{x}, y, z) = f_0(\overline{x}) + \sum_{i=1}^p y_i f_i(\overline{x}) + \sum_{i=1}^q z_i h_i(\overline{x})$ and \overline{x} is a feasible solution, we then obtain

$$L(\overline{x},y,z) \leq f(\overline{x}) = L(\overline{x},\overline{y},\overline{z})$$

The right-hand side follows from the complimentary slackness in Theorem (1.3), i.e. $\overline{y}_i f_i(\overline{x}) = 0$ for i = 1, ..., p. Next, we show that $L(\overline{x}, \overline{y}, \overline{z}) \geq L(x, \overline{y}, \overline{z})$. Consider

$$L(x, \overline{y}, \overline{z}) = f_0(x) + \sum_{i=1}^p \overline{y}_i f_i(x) + \sum_{i=1}^q \overline{z}_i h_i(x)$$

Since $f_i(x)$ for i = 1, ..., p is a convex function and $h_i(x)$ for i = 1, ..., q is an affine function, using the first order characterization of a convex function, we have

$$f_i(x) \ge f_i(\overline{x}) + \nabla f_i(\overline{x}) \cdot (x - \overline{x})$$
 for $i = 1, ..., p$
 $h_i(x) = h_i(\overline{x}) + \nabla h_i(\overline{x}) \cdot (x - \overline{x})$ for $i = 1, ..., q$

This implies

$$L(x,\overline{y},\overline{z}) \ge f_0(\overline{x}) + \sum_{i=1}^p \overline{y}_i f_i(\overline{x}) + \sum_{i=1}^q \overline{z}_i h_i(\overline{x}) + \left(\nabla f_0(\overline{x}) + \sum_{i=1}^p \overline{y}_i \nabla (f_i(\overline{x}) \sum_{i=1}^q \overline{z}_i \nabla h_i(x)\right) \cdot (x - \overline{x})$$

Using the last KKT condition in Theorem (1.3), i.e. $\nabla_x L(\overline{x}, \overline{y}, \overline{z}) = 0$, we obtain

$$L(x, \overline{y}, \overline{z}) \ge f_0(\overline{x}) + \sum_{i=1}^p \overline{y}_i f_i(\overline{x}) + \sum_{i=1}^q \overline{z}_i h_i(\overline{x})$$
$$= L(\overline{x}, \overline{y}, \overline{z}),$$

which completes the proof.

References

- [1] S. BOYD AND L. VANDENBERGHE, Convex Optimization, Cambridge University Press, (2004).
- [2] J. Burke, Undergraduate Nonlinear Continuous Optimization, *Lecture note*, University of Washington.
- [3] J. MITCHELL, Introduction to Optimization, *Lecture note*, Rensselaer Polytechnic Institute, Fall2018.